Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38657226

RESUMO

Graphite anode suffers from great capacity loss and larger cell polarization under low-temperature conditions in lithium-ion batteries (LIBs), which are mainly caused by the high energy barrier for the Li+ desolvation process and sluggish Li+ transfer rate across the solid electrolyte interface (SEI). Regulating an electrolyte with an anion-dominated solvation structure could synchronously stabilize the interface and boost the reaction kinetics of the graphite anode. Herein, a highly ionic conductive electrolyte consisting of a fully methylated cyclic ether solvent of 2,2,4,4,5,5-hexamethyl-1,3-dioxolane (HMD) and fluoroethylene carbonate (FEC) cosolvent was designed. The high electron-donating effect and steric hindrance of -(CH3)2 in HMD endow the HMD-based electrolyte with high ionic conductivity but lower coordination numbers with Li+, and an anion-dominated solvation structure was formed. Such configuration can accelerate the desolvation process and induce the forming of a LiF-rich SEI film on the anode, avoiding the solvent coembedding into graphite and enhancing the ion migration rate under low temperatures. The assembled Li||graphite cell with the tame electrolyte outperformed the conventional carbonates-based cell, showing 93.8% capacity retention after 227 cycles for the DF-based cell compared to 64.7% after 150 cycles. It also exhibited a prolonged cycle life for 200 rounds with 81% capacity retention under -20 °C. Therefore, this work offers a valuable thought for solvent design and provides approaches to electrolyte design for low-temperature LIBs.

2.
Nat Commun ; 15(1): 3041, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589412

RESUMO

Sugarcane is a vital crop with significant economic and industrial value. However, the cultivated sugarcane's ultra-complex genome still needs to be resolved due to its high ploidy and extensive recombination between the two subgenomes. Here, we generate a chromosomal-scale, haplotype-resolved genome assembly for a hybrid sugarcane cultivar ZZ1. This assembly contains 10.4 Gb genomic sequences and 68,509 annotated genes with defined alleles in two sub-genomes distributed in 99 original and 15 recombined chromosomes. RNA-seq data analysis shows that sugar accumulation-associated gene families have been primarily expanded from the ZZSO subgenome. However, genes responding to pokkah boeng disease susceptibility have been derived dominantly from the ZZSS subgenome. The region harboring the possible smut resistance genes has expanded significantly. Among them, the expansion of WAK and FLS2 families is proposed to have occurred during the breeding of ZZ1. Our findings provide insights into the complex genome of hybrid sugarcane cultivars and pave the way for future genomics and molecular breeding studies in sugarcane.


Assuntos
Saccharum , Saccharum/genética , Melhoramento Vegetal , Genômica , Haplótipos/genética , Cromossomos
3.
Plant J ; 117(3): 679-693, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37921032

RESUMO

During the oolong tea withering process, abiotic stresses induce significant changes in the content of various flavor substances and jasmonic acid (JA). However, the changes in chromatin accessibility during withering and their potential impact remain poorly understood. By integrating ATAC-seq, RNA-seq, metabolite, and hormone assays, we characterized the withering treatment-induced changes in chromatin accessibility, gene expression levels, important metabolite contents, and JA and JA-ILE contents. Additionally, we analyzed the effects of chromatin accessibility alterations on gene expression changes, content changes of important flavor substances, and JA hyperaccumulation. Our analysis identified a total of 3451 open- and 13 426 close-differentially accessible chromatin regions (DACRs) under withering treatment. Our findings indicate that close-DACRs-mediated down-regulated differentially expressed genes (DEGs) resulted in the reduced accumulation of multiple catechins during withering, whereas open-DACRs-mediated up-regulated DEGs contributed to the increased accumulation of important terpenoids, JA, JA-ILE and short-chain C5/C6 volatiles. We further highlighted important DACRs-mediated DEGs associated with the synthesis of catechins, terpenoids, JA and JA and short-chain C5/C6 volatiles and confirmed the broad effect of close-DACRs on catechin synthesis involving almost all enzymes in the pathway during withering. Importantly, we identified a novel MYB transcription factor (CsMYB83) regulating catechin synthesis and verified the binding of CsMYB83 in the promoter-DACRs regions of key catechin synthesis genes using DAP-seq. Overall, our results not only revealed a landscape of chromatin alters-mediated transcription, flavor substance and hormone changes under oolong tea withering, but also provided target genes for flavor improvement breeding in tea plant.


Assuntos
Catequina , Ciclopentanos , Isoleucina/análogos & derivados , Oxilipinas , Transcriptoma , Catequina/análise , Catequina/metabolismo , Cromatina/genética , Cromatina/metabolismo , Melhoramento Vegetal , Chá/química , Chá/metabolismo , Hormônios/análise , Hormônios/metabolismo , Terpenos/metabolismo , Folhas de Planta/metabolismo
4.
J Agric Food Chem ; 71(49): 19888-19899, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38048088

RESUMO

Oolong tea has gained great popularity in China due to its pleasant floral and fruity aromas. Although numerous studies have investigated the aroma differences across various tea cultivars, the genetic mechanism is unclear. This study performed multiomics analysis of three varieties suitable for oolong tea and three others with different processing suitability. Our analysis revealed that oolong tea varieties contained higher levels of cadinane sesquiterpenoids. PanTFBS was developed to identify variants of transcription factor binding sites (TFBSs). We found that the CsDCS gene had two TFBS variants in the promoter sequence and a single nucleotide polymorphism (SNP) in the coding sequence. Integrating data on genetic variations, gene expression, and protein-binding sites indicated that CsDCS might be a pivotal gene involved in the biosynthesis of cadinane sesquiterpenoids. These findings advance our understanding of the genetic factors involved in the aroma formation of oolong tea and offer insights into the enhancement of tea aroma.


Assuntos
Camellia sinensis , Sesquiterpenos , Compostos Orgânicos Voláteis , Camellia sinensis/genética , Camellia sinensis/química , Multiômica , Folhas de Planta/química , Compostos Orgânicos Voláteis/metabolismo , Sesquiterpenos Policíclicos/análise , Sesquiterpenos Policíclicos/metabolismo , Sesquiterpenos/metabolismo , Chá/química
5.
Nat Plants ; 9(12): 1986-1999, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38012346

RESUMO

Tea is one of the world's oldest crops and is cultivated to produce beverages with various flavours. Despite advances in sequencing technologies, the genetic mechanisms underlying key agronomic traits of tea remain unclear. In this study, we present a high-quality pangenome of 22 elite cultivars, representing broad genetic diversity in the species. Our analysis reveals that a recent long terminal repeat burst contributed nearly 20% of gene copies, introducing functional genetic variants that affect phenotypes such as leaf colour. Our graphical pangenome improves the efficiency of genome-wide association studies and allows the identification of key genes controlling bud flush timing. We also identified strong correlations between allelic variants and flavour-related chemistries. These findings deepen our understanding of the genetic basis of tea quality and provide valuable genomic resources to facilitate its genomics-assisted breeding.


Assuntos
Camellia sinensis , Camellia sinensis/genética , Estudo de Associação Genômica Ampla , Melhoramento Vegetal , Genômica , Chá
7.
Hortic Res ; 10(8): uhad126, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37560013

RESUMO

In plants, 5mC DNA methylation is an important and conserved epistatic mark involving genomic stability, gene transcriptional regulation, developmental regulation, abiotic stress response, metabolite synthesis, etc. However, the roles of 5mC DNA methylation modification (5mC methylation) in tea plant growth and development (in pre-harvest processing) and flavor substance synthesis in pre- and post-harvest processing are unknown. We therefore conducted a comprehensive methylation analysis of four key pre-harvest tissues (root, leaf, flower, and fruit) and two processed leaves during oolong tea post-harvest processing. We found that differential 5mC methylation among four key tissues is closely related to tissue functional differentiation and that genes expressed tissue-specifically, responsible for tissue-specific functions, maintain relatively low 5mC methylation levels relative to non-tissue-specifically expressed genes. Importantly, hypomethylation modifications of CsAlaDC and TS/GS genes in roots provided the molecular basis for the dominant synthesis of theanine in roots. In addition, integration of 5mC DNA methylationomics, metabolomics, and transcriptomics of post-harvest leaves revealed that content changes in flavor metabolites during oolong tea processing were closely associated with transcription level changes in corresponding metabolite synthesis genes, and changes in transcript levels of these important synthesis genes were strictly regulated by 5mC methylation. We further report that some key genes during processing are regulated by 5mC methylation, which can effectively explain the content changes of important aroma metabolites, including α-farnesene, nerolidol, lipids, and taste substances such as catechins. Our results not only highlight the key roles of 5mC methylation in important flavor substance synthesis in pre- and post-harvest processing, but also provide epimutation-related gene targets for future improvement of tea quality or breeding of whole-tissue high-theanine varieties.

8.
J Exp Bot ; 74(18): 5783-5804, 2023 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-37392434

RESUMO

Roses are significant botanical species with both ornamental and economic value, displaying diverse floral traits, particularly an extensive array of petal colors. The red pigmentation of rose petals is predominantly attributed to anthocyanin accumulation. However, the underlying regulatory mechanism of anthocyanin biosynthesis in roses remains elusive. This study presents a novel light-responsive regulatory module governing anthocyanin biosynthesis in rose petals, which involves the transcription factors RhHY5, RhMYB114a, and RhMYB3b. Under light conditions (1000-1500 µmol m-2 s-1), RhHY5 represses RhMYB3b expression and induces RhMYB114a expression, positively regulating anthocyanin biosynthesis in rose petals. Notably, activation of anthocyanin structural genes probably involves an interaction and synergy between RhHY5 and the MYB114a-bHLH3-WD40 complex. Additionally, RhMYB3b is activated by RhMYB114a to prevent excessive accumulation of anthocyanin. Conversely, under low light conditions (<10 µmol m-2 s-1), the degradation of RhHY5 leads to down-regulation of RhMYB114a and up-regulation of RhMYB3b, which in turn inhibits the expression of both RhMYB114a and anthocyanin structural genes. Additionally, RhMYB3b competes with RhMYB114a for binding to RhbHLH3 and the promoters of anthocyanin-related structural genes. Overall, our study uncovers a complex light-mediated regulatory network that governs anthocyanin biosynthesis in rose petals, providing new insights into the molecular mechanisms underlying petal color formation in rose.


Assuntos
Antocianinas , Fatores de Transcrição , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Antocianinas/metabolismo , Flores/metabolismo , Proteínas de Plantas/metabolismo , Pigmentação/genética , Regulação da Expressão Gênica de Plantas
9.
Genes (Basel) ; 14(7)2023 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-37510320

RESUMO

The tea plant, Camellia sinensis (L.) O. Kuntze, is one of the most important beverage crops with significant economic and cultural value. Global climate change and population growth have led to increased salt and drought stress, negatively affecting tea yield and quality. The response mechanism of tea plants to these stresses remains poorly understood due to the lack of reference genome-based transcriptional descriptions. This study presents a high-quality genome-based transcriptome dynamic analysis of C. sinensis' response to salt and drought stress. A total of 2244 upregulated and 2164 downregulated genes were identified under salt and drought stress compared to the control sample. Most of the differentially expression genes (DEGs) were found to involve divergent regulation processes at different time points under stress. Some shared up- and downregulated DEGs related to secondary metabolic and photosynthetic processes, respectively. Weighted gene co-expression network analysis (WGCNA) revealed six co-expression modules significantly positively correlated with C. sinensis' response to salt or drought stress. The MEpurple module indicated crosstalk between the two stresses related to ubiquitination and the phenylpropanoid metabolic regulation process. We identified 1969 salt-responsive and 1887 drought-responsive allele-specific expression (ASE) genes in C. sinensis. Further comparison between these ASE genes and tea plant heterosis-related genes suggests that heterosis likely contributes to the adversity and stress resistance of C. sinensis. This work offers new insight into the underlying mechanisms of C. sinensis' response to salt and drought stress and supports the improved breeding of tea plants with enhanced salt and drought tolerance.


Assuntos
Camellia sinensis , Camellia sinensis/metabolismo , Secas , Alelos , Redes Reguladoras de Genes , Haplótipos , Estresse Fisiológico/genética , Melhoramento Vegetal , Perfilação da Expressão Gênica , Cloreto de Sódio/metabolismo , Chá
10.
Adv Clin Chem ; 114: 109-150, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37268331

RESUMO

Lung cancer is the second most-frequently occurring cancer and the leading cause of cancer-associated deaths worldwide. Non-small cell lung cancer (NSCLC), the most common type of lung cancer is often diagnosed in middle or advanced stages and have poor prognosis. Diagnosis of disease at an early stage is a key factor for improving prognosis and reducing mortality, whereas, the currently used diagnostic tools are not sufficiently sensitive for early-stage NSCLC. The emergence of liquid biopsy has ushered in a new era of diagnosis and management of cancers, including NSCLC, since analysis of circulating tumor-derived components, such as cell-free DNA (cfDNA), circulating tumor cells (CTCs), cell-free RNAs (cfRNAs), exosomes, tumor-educated platelets (TEPs), proteins, and metabolites in blood or other biofluids can enable early cancer detection, treatment selection, therapy monitoring and prognosis assessment. There have been great advances in liquid biopsy of NSCLC in the past few years. Hence, this chapter introduces the latest advances on the clinical application of cfDNA, CTCs, cfRNAs and exosomes, with a particular focus on their application as early markers in the diagnosis, treatment and prognosis of NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Ácidos Nucleicos Livres , Neoplasias Pulmonares , Células Neoplásicas Circulantes , Humanos , Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Biomarcadores Tumorais/genética , Biópsia Líquida , Ácidos Nucleicos Livres/genética , Células Neoplásicas Circulantes/patologia
11.
Int J Mol Sci ; 24(10)2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37239869

RESUMO

The CYP76 subfamily, a member of the CYP superfamily, plays crucial roles in the biosynthesis of phytohormones in plants, involving biosynthesis of secondary metabolites, hormone signaling, and response to environmental stresses. Here, we conducted a genome-wide analysis of the CYP76 subfamily in seven AA genome species: Oryza sativa ssp. japonica, Oryza sativa ssp. indica, Oryza rufipogon, Oryza glaberrima, Oryza meridionalis, Oryza barthii, and Oryza glumaepatula. These were identified and classified into three groups, and it was found that Group 1 contained the largest number of members. Analysis of cis-acting elements revealed a large number of elements related to jasmonic acid and light response. The gene duplication analysis revealed that the CYP76 subfamily expanded mainly in SD/WGD and tandem forms and underwent strong purifying selection during evolution. Expression pattern analysis of OsCYP76s in various developmental stages revealed that the majority of OsCYP76s exhibit relatively restricted expression patterns in leaves and roots. We further analyzed the expression of CYP76s in O. sativa, japonica, and O. sativa, indica under cold, flooding, drought, and salt abiotic stresses by qRT-PCR. We found that OsCYP76-11 showed a huge increase in relative expression after drought and salt stresses. After flooding stress, OsiCYP76-4 showed a greater increase in expression compared to other genes. CYP76 in japonica and indica showed different response patterns to the same abiotic stresses, revealing functional divergence in the gene family during evolution; these may be the key genes responsible for the differences in tolerance to indica japonica. Our results provide valuable insights into the functional diversity and evolutionary history of the CYP76 subfamily and pave the way for the development of new strategies for improving stress tolerance and agronomic traits in rice.


Assuntos
Oryza , Oryza/genética , Oryza/metabolismo , Duplicação Gênica , Estresse Fisiológico/genética , Estresse Salino , Reação em Cadeia da Polimerase , Filogenia , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
12.
Rand Health Q ; 10(2): 4, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37200829

RESUMO

The U.S. direct care workforce employs nearly 4.6 million people and represents one of the fastest growing occupations in the United States. Direct care workers, or "caregivers," include nursing assistants, home care workers, and residential care aides, all of whom provide basic care to older adults and individuals with disabilities in various health care settings. Despite a growing need for caregivers, supply has not kept up with demand due to high turnover and low wages. In addition, caregivers often face high levels of workplace stress, limited training and growth opportunities, and personal stressors. Ranging from 35 to 90 percent, depending on the health care setting, the turnover rates of direct care workers pose a major challenge for health systems, as well as care recipients and workers themselves. In 2019, the Ralph C. Wilson Jr. Foundation funded three health systems to support the implementation of a new program: Transformational Healthcare Readiness through Innovative Vocational Education (THRIVE). This 12-month program was designed to help address barriers that entry-level caregivers experience and reduce turnover through a comprehensive risk assessment, training, and one-on-one coaching. Researchers from RAND conducted a process and outcome evaluation to determine whether THRIVE was meeting its goals of improving retention and achieving a positive return on investment (ROI). They also examined potential areas for program improvement.

13.
Genomics Proteomics Bioinformatics ; 21(3): 427-439, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37100237

RESUMO

Over the past 20 years, tremendous advances in sequencing technologies and computational algorithms have spurred plant genomic research into a thriving era with hundreds of genomes decoded already, ranging from those of nonvascular plants to those of flowering plants. However, complex plant genome assembly is still challenging and remains difficult to fully resolve with conventional sequencing and assembly methods due to high heterozygosity, highly repetitive sequences, or high ploidy characteristics of complex genomes. Herein, we summarize the challenges of and advances in complex plant genome assembly, including feasible experimental strategies, upgrades to sequencing technology, existing assembly methods, and different phasing algorithms. Moreover, we list actual cases of complex genome projects for readers to refer to and draw upon to solve future problems related to complex genomes. Finally, we expect that the accurate, gapless, telomere-to-telomere, and fully phased assembly of complex plant genomes could soon become routine.


Assuntos
Genoma de Planta , Genômica , Análise de Sequência de DNA , Plantas/genética , Algoritmos , Sequenciamento de Nucleotídeos em Larga Escala
14.
Front Plant Sci ; 14: 1149182, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37035086

RESUMO

As the main flavor components of tea, the contents of epigallocatechin-3-gallate (EGCG), theanine and caffeine are regulated by ambient temperature. However, whether the biosynthesis of EGCG, theanine and caffeine in response to temperature is regulated by endogenous hormones and its mechanism is still unclear. In this study, tea cuttings cultivated in the phytotron which treated at different temperatures 15℃, 20℃, 25℃ and 30℃, respectively. The UPLC and ESI-HPLC-MS/MS were used to determine the contents of EGCG, theanine, caffeine and the contents of phytohormones in one leaf and a bud. The results showed that indoleacetic acid (IAA), gibberellin 1(GA1) and gibberellin 3 (GA3) were significantly correlated with the content of EGCG; Jasmonic acid (JA), jasmonate-isoleucine (JA-Ile) and methyl jasmonate (MeJA) were strongly correlated with theanine content; IAA, GA1 and gibberellin 4 (GA4) were significantly correlated with caffeine content at different temperatures. In order to explore the internal intricate relationships between the biosynthesis of these three main taste components, endogenous hormones, and structural genes in tea plants, we used multi-omics and multidimensional correlation analysis to speculate the regulatory mechanisms: IAA, GA1 and GA3 up-regulated the expressions of chalcone synthase (CsCHS) and trans-cinnamate 4-monooxygenase (CsC4H) mediated by the signal transduction factors auxin-responsive protein IAA (CsIAA) and DELLA protein (CsDELLA), respectively, which promoted the biosynthesis of EGCG; IAA, GA3 and GA1 up-regulated the expression of CsCHS and anthocyanidin synthase (CsANS) mediated by CsIAA and CsDELLA, respectively, via the transcription factor WRKY DNA-binding protein (CsWRKY), and promoted the biosynthesis of EGCG; JA, JA-Ile and MeJA jointly up-regulated the expression of carbonic anhydrase (CsCA) and down-regulated the expression of glutamate decarboxylase (CsgadB) mediated by the signal transduction factors jasmonate ZIM domain-containing protein (CsJAZ), and promoted the biosynthesis of theanine; JA, JA-Ile and MeJA also jointly inhibited the expression of CsgadB mediated by CsJAZ via the transcription factor CsWRKY and AP2 family protein (CsAP2), which promoted the biosynthesis of theanine; IAA inhibited the expression of adenylosuccinate synthase (CspurA) mediated by CsIAA via the transcription factor CsWRKY; GA1 and gibberellin 4 (GA4) inhibited the expression of CspurA mediated by CsDELLA through the transcription factor CsWRKY, which promoted the biosynthesis of caffeine. In conclusion, we revealed the underlying mechanism of the biosynthesis of the main taste components in tea plant in response to temperature was mediated by hormone signal transduction factors, which provided novel insights into improving the quality of tea.

15.
Int J Mol Sci ; 24(2)2023 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-36675168

RESUMO

Indica(xian)-japonica(geng) hybrid rice has many heterosis traits that can improve rice yield. However, the traditional hybrid technology will struggle to meet future needs for the development of higher-yield rice. Available genomics resources can be used to efficiently understand the gene-trait association trait for rice breeding. Based on the previously constructed high-density genetic map of 272 high-generation recombinant inbred lines (RILs) originating from the cross of Luohui 9 (indica, as female) and RPY geng (japonica, as male) and high-quality genomes of parents, here, we further explore the genetic basis for an important complex trait: possible causes of grain number per panicle (GNPP). A total of 20 genes related to grains number per panicle (GNPP) with the differences of protein amino acid between LH9 and RPY were used to analyze genotype combinations, and PCA results showed a combination of PLY1, LAX1, DTH8 and OSH1 from the RPY geng with PYL4, SP1, DST and GNP1 from Luohui 9 increases GNPP. In addition, we also found that the combination of LAX1-T2 and GNP1-T3 had the most significant increase in GNPP. Notably, Molecular Breeding Knowledgebase (MBK) showed a few aggregated rice cultivars, LAX1-T2 and GNP1-T3, which may be a result of the natural geographic isolation between the two gene haplotypes. Therefore, we speculate that the pyramiding of japonica-type LAX-T2 with indica-type GNP1-T3 via hybridization can significantly improve rice yield by increasing GNPP.


Assuntos
Oryza , Oryza/genética , Melhoramento Vegetal/métodos , Hibridização Genética , Grão Comestível/genética , Alelos
16.
Front Plant Sci ; 13: 995634, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36072319

RESUMO

Following the "green revolution," indica and japonica hybrid breeding has been recognized as a new breakthrough in further improving rice yields. However, heterosis-related grain weight QTLs and the basis of yield advantage among subspecies has not been well elucidated. We herein de novo assembled the chromosome level genomes of an indica/xian rice (Luohui 9) and a japonica/geng rice (RPY geng) and found that gene number differences and structural variations between these two genomes contribute to the differences in agronomic traits and also provide two different favorable allele pools to produce better derived recombinant inbred lines (RILs). In addition, we generated a high-generation (> F15) population of 272 RILs from the cross between Luohui 9 and RPY geng and two testcross hybrid populations derived from the crosses of RILs and two cytoplasmic male sterile lines (YTA, indica and Z7A, japonica). Based on three derived populations, we totally identified eight 1,000-grain weight (KGW) QTLs and eight KGW heterosis loci. Of QTLs, qKGW-6.1 and qKGW-8.1 were accepted as novel KGW QTLs that have not been reported previously. Interestingly, allele genotyping results revealed that heading date related gene (Ghd8) in qKGW-8.1 and qLH-KGW-8.1, can affect grain weight in RILs and rice core accessions and may also play an important role in grain weight heterosis. Our results provided two high-quality genomes and novel gene editing targets for grain weight for future rice yield improvement project.

17.
Hortic Res ; 9: uhac100, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35795389

RESUMO

Specialized metabolites not only play important roles in biotic and abiotic stress adaptation of tea plants (Camellia sinensis (L.) O. Kuntze) but also contribute to the unique flavor of tea, the most important nonalcoholic beverage. However, the molecular networks and major genes that regulate specialized metabolites in tea plants are not well understood. Here, we constructed a population-level pan-transcriptome of the tea plant leaf using second-leaf transcriptome data from 134 accessions to investigate global expression differences in the population, expression presence or absence variations (ePAVs), and differentially expressed genes (DEGs) between pure Camellia sinensis var. assamica (CSA) and pure Camellia sinensis var. sinensis (CSS) accessions. Next, we used a genome-wide association study, a quantitative trait transcript study, and a transcriptome-wide association study to integrate genotypes, accumulation levels of specialized metabolites, and expression levels of pan-transcriptome genes to identify candidate regulatory genes for flavor-related metabolites and to construct a regulatory network for specialized metabolites in tea plants. The pan-transcriptome contains 30 482 expressed genes, 4940 and 5506 of which were newly annotated from a de novo transcriptome assembly without a reference and a genome reference-based assembly, respectively. DEGs and ePAVs indicated that CSA and CSS were clearly differentiated at the population transcriptome level, and they were closely related to abiotic tolerance and secondary metabolite synthesis phenotypes of CSA and CSS based on gene annotations. The regulatory network contained 212 specialized metabolites, 3843 candidate genes, and 3407 eQTLs, highlighting many pleiotropic candidate genes, candidate gene-rich eQTLs, and potential regulators of specialized metabolites. These included important transcription factors in the AP2/ERF-ERF, MYB, WD40, and bHLH families. CsTGY14G0001296, an ortholog of AtANS, appeared to be directly related to variation in proanthocyanins in the tea plant population, and the CsTGY11G0002074 gene encoding F3'5'H was found to contribute to the biased distribution of catechins between pure CSAs and pure CSSs. Together, these results provide a new understanding of the metabolite diversity in tea plants and offer new insights for more effective breeding of better-flavored tea varieties.

18.
Genes (Basel) ; 13(5)2022 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-35627248

RESUMO

The plant hormones gibberellins (GAs) regulate plant growth and development and are closely related to the yield of cash crops. The GA oxidases (GAoxs), including the GA2ox, GA3ox, and GA20ox subfamilies, play pivotal roles in GAs' biosynthesis and metabolism, but their classification and evolutionary pattern in Gramineae crops remain unclear. We thus conducted a comparative genomic study of GAox genes in six Gramineae representative crops, namely, Setaria italica (Si), Zea mays (Zm), Sorghum bicolor (Sb), Hordeum vulgare (Hv), Brachypodium distachyon (Bd), and Oryza sativa (Os). A total of 105 GAox genes were identified in these six crop genomes, belonging to the C19-GA2ox, C20-GA2ox, GA3ox, and GA20ox subfamilies. Based on orthogroup (OG) analysis, GAox genes were divided into nine OGs and the number of GAox genes in each of the OGs was similar among all tested crops, which indicated that GAox genes may have completed their family differentiations before the species differentiations of the tested species. The motif composition of GAox proteins showed that motifs 1, 2, 4, and 5, forming the 2OG-FeII_Oxy domain, were conserved in all identified GAox protein sequences, while motifs 11, 14, and 15 existed specifically in the GA20ox, C19-GA2ox, and C20-GA2ox protein sequences. Subsequently, the results of gene duplication events suggested that GAox genes mainly expanded in the form of WGD/SD and underwent purification selection and that maize had more GAox genes than other species due to its recent duplication events. The cis-acting elements analysis indicated that GAox genes may respond to growth and development, stress, hormones, and light signals. Moreover, the expression profiles of rice and maize showed that GAox genes were predominantly expressed in the panicles of the above two plants and the expression of several GAox genes was significantly induced by salt or cold stresses. In conclusion, our results provided further insight into GAox genes' evolutionary differences among six representative Gramineae and highlighted GAox genes that may play a role in abiotic stress.


Assuntos
Giberelinas , Oryza , Resposta ao Choque Frio , Produtos Agrícolas/metabolismo , Giberelinas/metabolismo , Oryza/genética , Oryza/metabolismo , Oxirredutases/genética , Filogenia
19.
Genes (Basel) ; 13(3)2022 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-35328100

RESUMO

Rose (Rosa chinensis) is one of the most famous ornamental plants worldwide, with a variety of colors and fragrances. Terpene synthases (TPSs) play critical roles in the biosynthesis of terpenes. In this work, we report a comprehensive study on the genome-wide identification and characterization of the TPS family in R. chinensis. We identified 49 TPS genes in the R. chinensis genome, and they were grouped into five subfamilies (TPS-a, TPS-b, TPS-c, TPS-g and TPS-e/f). Phylogenetics, gene structure and conserved motif analyses indicated that the RcTPS genes possessed relatively conserved gene structures and the RcTPS proteins contained relatively conserved motifs. Multiple putative cis-acting elements involved in the stress response were identified in the promoter region of RcTPS genes, suggesting that some could be regulated by stress. The expression profile of RcTPS genes showed that they were predominantly expressed in the petals of open flowers, pistils, leaves and roots. Under osmotic and heat stresses, the expression of most RcTPS genes was upregulated. These data provide a useful foundation for deciphering the functional roles of RcTPS genes during plant growth as well as addressing the link between terpene biosynthesis and abiotic stress responses in roses.


Assuntos
Rosa , Alquil e Aril Transferases , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Rosa/genética , Estresse Fisiológico/genética , Terpenos/metabolismo
20.
Plant J ; 110(3): 814-827, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35165965

RESUMO

Plant height (PH) is an important trait affecting the plant architecture, seed yield, and harvest index. However, the molecular mechanisms underlying PH heterosis remain unclear. In addition, useful PH-related genes must be urgently identified to facilitate ideal plant architecture breeding in rice (Oryza sativa L.). In the present study, to explore rice quantitative trait loci (QTLs) and heterosis-related loci of PH in rice, we developed a high-generation (>F15 ) population of 272 recombinant inbred lines (RIL) from a cross of two elite varieties, Luohui 9 (indica/xian) × RPY geng (japonica/geng), and two testcross hybrid populations derived from the crosses of RILs and two cytoplasmic male sterile lines (YTA [indica] and Z7A [japonica]). Using deep resequencing data, a high-density genetic map containing 4758 bin markers was constructed, with a total map distance of 2356.41 cM. Finally, 31 PH-related QTLs for different PH component lengths or tiller numbers across five seasons were identified. Two major environment-specific PH QTLs were stably detected in Hainan (qPH-3.1) or Hubei (qPH-5.1), which have undergone significant functional alterations in rice with changes in geographical environment. Based on comparative genomics, gene function annotation, homolog identification, and existing literature (pioneering studies), candidate genes for multiple QTLs were fine-mapped, and the candidate genes qPH-3.1 and qPH-5.1 for PH were further validated using CRISPR-Cas9 gene editing. Specifically, qPH-3.1 was characterized as a pleiotropic gene, and the qPH-3.1 knockout line showed reduced PH, delayed heading, a decreased seed setting rate, and increased tiller numbers. Importantly, 10 PH heterosis-related QTLs were identified in the testcross populations, and a better-parent heterosis locus (qBPH-5.2) completely covered qPH-5.1. Furthermore, the cross results of fixed-genotype RILs verified the dominant effects of qPH-3.1 and qPH-5.1. Together, these findings further our understanding of the genetic mechanisms of PH and offer multiple highly reliable gene targets for breeding rice varieties with ideal architecture and high yield potential in the immediate future.


Assuntos
Vigor Híbrido , Oryza , Mapeamento Cromossômico/métodos , Genes de Plantas , Ligação Genética , Vigor Híbrido/genética , Oryza/genética , Fenótipo , Melhoramento Vegetal , Locos de Características Quantitativas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...